You can sponsor this page

Enteromius alberti (Poll, 1939)

Upload your photos and videos
Pictures | Google image
Image of Enteromius alberti
Enteromius alberti
Picture by KMFRI

Classification / Names Common names | Synonyms | Catalog of Fishes(genus, species) | ITIS | CoL | WoRMS | Cloffa

Teleostei (teleosts) > Cypriniformes (Carps) > Cyprinidae (Minnows or carps) > Smiliogastrinae
Etymology: Enteromius: Greek, enteron = intestine + Greek, myo, mys = muscle (Ref. 45335);  alberti: Probably, the species epithet alberti is derived from the name of the former 'Parc National Albert', now Virunga National Park, in which the type locality is located (Ref. 127947).

Environment: milieu / climate zone / depth range / distribution range Ecology

Freshwater; benthopelagic. Tropical

Distribution Countries | FAO areas | Ecosystems | Occurrences | Point map | Introductions | Faunafri

Africa: river systems throughout the Lake Edward basin and Lake Victoria basin (Ref. 27628, 127947).

Size / Weight / Age

Maturity: Lm ?  range ? - ? cm
Max length : 7.4 cm SL male/unsexed; (Ref. 127947)

Short description Identification keys | Morphology | Morphometrics

Dorsal spines (total): 0; Dorsal soft rays (total): 10 - 12; Anal spines: 0; Anal soft rays: 8 - 9. Diagnosis: Enteromius alberti belongs to the group of species of Enteromius with a flexible last unbranched dorsal fin ray that lacks serrations along its posterior edge (Ref. 127947). It can easily be distinguished from the other species of this group from the East Coast and Nilo-Sudan ichthyofaunal regions by the following combination of characteristics: a complete lateral line vs. an incomplete lateral line in E. atkinsoni, E. pumilus, E. serengetiensis, E. tongaensis and E. toppini; two pairs of barbels vs. one pair in E. pseudotoppini, and no barbels in E. anema and E. profundus; one to three dark spots on the flanks, which sometimes fuse into a mid-lateral line in preserved specimens, starting posterior to the operculum vs. a dark line running from the tip of the snout to the caudal fin base in E. bifrenatus and E. yongei, and a thin dark line from the beginning of the operculum to the caudal fin base in E. viviparus; 12 scales around the caudal peduncle, with one aberrant specimen with 16, vs. 8 in E. leonensis, 9-10 in E. venustus, and 10 in E. magdalenae and E. yeiensis; 4.5 scales between the dorsal fin base and the lateral line vs. 3.5 in E. radiatus, 5.5 in E. unitaeniatus, and 6 in E. usambarae; a dorsal fin length which is larger than the head length vs. a dorsal fin length equal to the headclength in E. innocens; a body depth which is larger than the head length vs. a body depth which is equal to the head length in E. nigeriensis and E. trispilopleura; a pectoral fin length which is 5/6 of the head length vs. 3/4 in E. lineomaculatus, and 2/3 to 3/4 in E. neglectus; a maximum caudal peduncle depth which is 3/5 of the head length vs. 2/5 in E. quadripunctatus (Ref. 127947). Enteromius alberti differs from E. perince by a combination of a smaller body depth, 21.7-31.2% of standard length vs. 33.8-37.5%; a smaller minimum caudal peduncle depth, 10.0-13.6% of standard length vs. 15.0-16.4%; and a smaller maximum caudal peduncle depth, 11.8-15.5% of standard length vs. 17.7-19.4%; it differs from E. stigmatopygus by a combination of a higher number of lateral line scales, 27-34 vs. 20.25; a smaller predorsal distance, 45.7-51.3% of standard length vs. 51.9-55.8%; and a smaller pre-occipital distance, 16.6-21.8% of standard length vs. 22.1-27.3%; it differs from E. mimus by a higher number of lateral line scales, 27-34 vs. 24-27; a smaller preanal distance, 65.1-73.0% of standard length vs. 68.4-74.8%; a larger post-anal distance, 16.3-24.2% of standard length vs. 16.3-19.3%; a smaller body depth, 21.7-31.2% of standard length vs. 26.5-34.3%; a smaller head depth, 15.1-19.0% of standard length vs. 17.8-21.8%; and a smaller pelvic fin length, 15.0-20.9% of standard length vs. 18.2-22.4% (Ref. 127947). Specimens of E. alberti differ from the population of E. cf. mimus from the Lake Edward system by a smaller head depth; in general, a specimen with a head depth smaller than 19% of the standard length can be assigned to E. alberti, specimens with a head depth larger than 19% of the standard length can be assigned to E. cf. mimus; other characters are the higher number of lateral line scales, 27-34 vs. 21-31, the smaller interorbital width, 5.8-8.3% of standard length vs. 6.9-9.9, the smaller pre-pelvic distance, 44.8-53.3% of standard length vs. 48.4-55.4%, the smaller body depth, 21.7-31.2% of standard length vs. 23.5-35.8%, the smaller maximum caudal peduncle depth, 11.8-15.5% of standard length vs. 8.7-19.0%, the smaller minimum caudal peduncle depth, 10.0-13.6% of standard length vs. 7.1-15.9%, and the smaller head width, 10.4-14.2% of standard length vs. 11.6-14.5% (Ref. 127947).

Biology     Glossary (e.g. epibenthic)

This species may be anadromous but with permanent populations in the upper reaches of larger rivers (Ref. 104796). Feeds on insects, but algae and debris are also taken (Ref. 12523).

Life cycle and mating behavior Maturities | Reproduction | Spawnings | Egg(s) | Fecundities | Larvae

Main reference Upload your references | References | Coordinator | Collaborators

Maetens, H., M. Van Steenberge, J. Snoeks and E. Decru, 2020. Revalidation of Enteromius alberti and presence of Enteromius cf. mimus (Cypriniformes: Cyprinidae) in the Lake Edward system, East Africa. Eur. J. Taxon. 700:1-28. (Ref. 127947)

IUCN Red List Status (Ref. 130435)


CITES

Not Evaluated

CMS (Ref. 116361)

Not Evaluated

Threat to humans

  Harmless





Human uses

FAO - Publication: search | FishSource |

More information

Trophic ecology
Food items
Diet compositions
Food consumptions
Food rations
Predators
Ecology
Ecology
Population dynamics
Growths
Max. ages / sizes
Length-weight rel.
Length-length rel.
Length-frequencies
Mass conversions
Recruitments
Abundances
Life cycle
Reproduction
Maturities
Fecundities
Spawnings
Spawning aggregations
Egg(s)
Egg developments
Larvae
Larval dynamics
Distribution
Countries
FAO areas
Ecosystems
Occurrences
Introductions
BRUVS - Videos
Anatomy
Gill areas
Brains
Otoliths
Physiology
Body compositions
Nutrients
Oxygen consumptions
Swimming type
Swimming speeds
Visual pigment(s)
Fish sounds
Diseases / Parasites
Toxicities (LC50s)
Genetics
Genetics
Electrophoreses
Heritabilities
Human related
Aquaculture systems
Aquaculture profiles
Strains
Ciguatera cases
Stamps, coins, misc.
Outreach
Collaborators
Taxonomy
Common names
Synonyms
Morphology
Morphometrics
Pictures
References
References

Tools

Special reports

Download XML

Internet sources

AFORO (otoliths) | Aquatic Commons | BHL | Cloffa | BOLDSystems | Websites from users | Check FishWatcher | CISTI | Catalog of Fishes: genus, species | DiscoverLife | ECOTOX | FAO - Publication: search | Faunafri | Fishipedia | Fishtrace | GenBank: genome, nucleotide | GloBI | Google Books | Google Scholar | Google | IGFA World Record | MitoFish | Otolith Atlas of Taiwan Fishes | PubMed | Reef Life Survey | Socotra Atlas | Tree of Life | Wikipedia: Go, Search | World Records Freshwater Fishing | Zoological Record

Estimates based on models

Phylogenetic diversity index (Ref. 82804):  PD50 = No PD50 data   [Uniqueness, from 0.5 = low to 2.0 = high].
Trophic level (Ref. 69278):  3.0   ±0.3 se; based on size and trophs of closest relatives
Resilience (Ref. 120179):  High, minimum population doubling time less than 15 months (Preliminary K or Fecundity.).
Fishing Vulnerability (Ref. 59153):  Low vulnerability (10 of 100).